报告讲座

主持人:刘四明教授

时间:2023年2月15日(周三)10:00

地点:犀浦校区2教2539

腾讯会议号:510961997

题目:Particle Acceleration in Pulsar Wind Nebulae

主讲人:贾鸿宇Gwenael Giacinti 上海交通大学 副教授

Gwenael Giacinti is a T. D. Lee Fellow at the Tsung-Dao Lee Institute, and a Tenure-track Associate Professor at Shanghai Jiao Tong University. Prior to that, he held postdoctoral researcher positions at the University of Oxford (United Kingdom), and at the Max Planck Institute for Nuclear Physics in Heidelberg (Germany). He earned his Ph.D. degree from Paris 7 University (France). He is interested in a number of topics in theoretical high-energy astrophysics and particle astrophysics, including cosmic-ray propagation, particle acceleration in pulsar wind nebulae, supernovae and supernova remnants, as well as gamma-ray astronomy. He is also interested in related plasma astrophysics problems, such as shock physics in the context of supernova shock breakout. He is the science working group coordinator of the Southern Wide field-of-view Gamma-ray Observatory (SWGO), and a member of the High Altitude Water Cherenkov (HAWC) Collaboration.

Abstract:

Pulsar wind nebulae (PWNe) are known to accelerate electrons to very high energies (VHE), but the acceleration mechanism and site remain uncertain. The pulsar wind termination shock (TS) is a natural candidate for the acceleration site, but the toroidal geometry of the magnetic field there should render shock acceleration inoperative.

In this talk, we present a novel solution to this apparent contradiction. Integrating individual particle trajectories in a model of the magnetic field and flow pattern inspired by MHD simulations of PWNe, we find that drift motion along the shock surface keeps either electrons or positrons in a ring-shaped region of the TS, close to the equatorial plane of the pulsar, where they are accelerated to VHE by the first-order Fermi mechanism.

Applying our findings to the Crab Nebula, we find that both its high-energy synchrotron emission and > TeV gamma-ray emission can be reproduced by this model. We show that the recent observations by LHAASO of the Crab Nebula up to PeV energies allow for putting new constraints on parameters of the Crab pulsar wind that are still poorly known.

Finally, we present results from our heavier Particle-In-Cell simulations of pulsar wind TS. They confirm the above results, and also suggest that a second electron acceleration mechanism (namely, reconnection) operates downstream of the TS, in the equatorial current sheet. We show that the latter provides a natural explanation for the inner-ring knots in the Crab Nebula, whose origin had remained elusive so far.

上一条:格物致理36期:银河系旋臂结构 下一条:The Chang-Yun Fan cosmic ray series 第3期:The Acceleration of Energetic Particles by Shocks Driven by Fast Coronal Mass Ejections

© 2021 粒子天体物理实验室 | 中国四川省成都市郫都区犀安路  999 号 西南交通大学